GBPC35005 THRU GBPC3510

Glass Passivated Bridge Rectifiers

Reverse Voltage - 50 to 1000 Volts Forward Current - 35 Amperes

.335 (8.5) .295 (7.5)

Hole for No.8 Screw

1.133 (28.8) 1.114 (28.3)

.673 (17.1) .634 (16.1)

.583 (14.8)

Features

- Glass passivated chip
- Low forward voltage drop
- •Meet UL flammability classification 94V-0

Mechanical Data

• Polarity: Symbol marked on body

• Mounting position: Any

Note: Products with logo or or or

are made by HY Electronic (Cayman) Limited.

Applications

• General purpose use in AC/DC bridge full wave rectification, for home appliances, office equipment, etc.

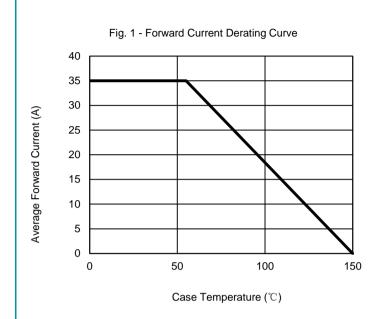
GBPC

Package Outline Dimensions in Inches (Millimeters)

Maximum Ratings and Electrical Characteristics

Rating at 25°C ambient temperature unless otherwise specified.

Single phase, half wave, 60Hz, resistive or inductive load.


For capacitive load, derate current by 20%.

Symbol	GBPC	GBPC	GBPC	GBPC	GBPC	GBPC	GBPC	Unit
Symbol	35005	3501	3502	3504	3506	3508	3510	
Vrrm	50	100	200	400	600	800	1000	V
VRMS	35	70	140	280	420	560	700	V
l(AV)	35							Α
Iron	400							A
IFSIVI								
l ² t	664						A ² s	
VF	1.1						V	
lo.	5							μA
IK			500					μΑ
TJ	-55 to +150						$^{\circ}$	
Tstg	-55 to +150						$^{\circ}$	
	VRMS I(AV) IFSM I ² t VF IR	Symbol 35005	Symbol 35005 3501	Symbol 35005 3501 3502 VRRM 50 100 200 VRMS 35 70 140 I(AV) IFSM I ² t VF IR TJ -	Symbol 35005 3501 3502 3504 VRRM 50 100 200 400 VRMS 35 70 140 280 I(AV) 35 IFSM 400 I²t 664 VF 1.1 IR 5 TJ -55 to +15	Symbol 35005 3501 3502 3504 3506 VRRM 50 100 200 400 600 VRMS 35 70 140 280 420 I(AV) 35 IFSM 400 I²t 664 VF 1.1 IR 5 TJ -55 to +150	Symbol 35005 3501 3502 3504 3506 3508 VRMM 50 100 200 400 600 800 VRMS 35 70 140 280 420 560 I(AV) 35 IFSM 400 I ² t 664 VF 1.1 IR 5 TJ -55 to +150	Symbol 35005 3501 3502 3504 3506 3508 3510 VRRM 50 100 200 400 600 800 1000 VRMS 35 70 140 280 420 560 700 I(AV) 35 IFSM 400 I²t 664 VF 1.1 IR 5 TJ -55 to +150

Rev. 11, 18-May-2020

Rating and Characteristic Curves GBPC35005 THRU GBPC3510

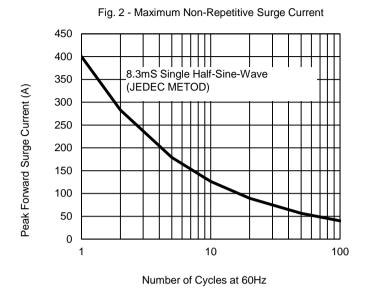


Fig. 3 - Typical Reverse Characteristics

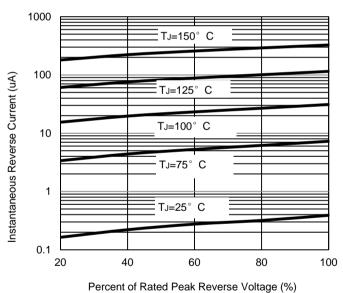


Fig. 4 - Typical Forward Characteristics 25 Pulse Width 300uS 2%Duty Cycle 10 Instantaneous Forward Current (A) TJ=100° Tj=25° TJ=125° TJ=75° C 0.1 0.2 0.6 1 1.2 1.6 0.4 0.8 1.4

Instantaneous Forward Voltage (V)

The curve above is for reference only.

GBPC35*-B/S-00/99-00/01

Rev. 11, 18-May-2020

Disclaimer

ALL specifications and data are subject to be changed without notice to improve reliability function or design or other reasons.

HY makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the cotinuing production of any product. To the maximum extent permitted by applicable law, HY disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on HY's knowledge of typical requirements that are often placed on HY products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify HY's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, HY products are not designed for use in medical, life-saving, or life-sustaining applications or for any other applications in which the failure of the HY product could result in personal injury or death. Customers using or selling HY products not expressly indicated for use in such applications do so at their own risk. Please contact authorized HY personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of HY. Product names and markings noted herein may be trademarks of their respective owners.